227 research outputs found

    The computational complexity of convex bodies

    Full text link
    We discuss how well a given convex body B in a real d-dimensional vector space V can be approximated by a set X for which the membership question: ``given an x in V, does x belong to X?'' can be answered efficiently (in time polynomial in d). We discuss approximations of a convex body by an ellipsoid, by an algebraic hypersurface, by a projection of a polytope with a controlled number of facets, and by a section of the cone of positive semidefinite quadratic forms. We illustrate some of the results on the Traveling Salesman Polytope, an example of a complicated convex body studied in combinatorial optimization.Comment: 24 page

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT

    Approximation Limits of Linear Programs (Beyond Hierarchies)

    Full text link
    We develop a framework for approximation limits of polynomial-size linear programs from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any linear program as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n^{1/2-eps})-approximations for CLIQUE require linear programs of size 2^{n^\Omega(eps)}. (This lower bound applies to linear programs using a certain encoding of CLIQUE as a linear optimization problem.) Moreover, we establish a similar result for approximations of semidefinite programs by linear programs. Our main ingredient is a quantitative improvement of Razborov's rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of certain perturbations of the unique disjointness matrix.Comment: 23 pages, 2 figure

    Uncapacitated Flow-based Extended Formulations

    Full text link
    An extended formulation of a polytope is a linear description of this polytope using extra variables besides the variables in which the polytope is defined. The interest of extended formulations is due to the fact that many interesting polytopes have extended formulations with a lot fewer inequalities than any linear description in the original space. This motivates the development of methods for, on the one hand, constructing extended formulations and, on the other hand, proving lower bounds on the sizes of extended formulations. Network flows are a central paradigm in discrete optimization, and are widely used to design extended formulations. We prove exponential lower bounds on the sizes of uncapacitated flow-based extended formulations of several polytopes, such as the (bipartite and non-bipartite) perfect matching polytope and TSP polytope. We also give new examples of flow-based extended formulations, e.g., for 0/1-polytopes defined from regular languages. Finally, we state a few open problems
    • …
    corecore